Thursday, May 30, 2013

Adirondack Aquatic Invasive Plant Identification Training Announced: Volunteers Needed

Aquatic Invasive Plant Identification Training Announced: Volunteers Needed

Meghan Johnstone
APIPP Aquatic Invasive Species Project Coordinator
518-576-2082 x 119 or

For Immediate Release:
Aquatic Invasive Plant Identification Training Announced: Volunteers Needed

KEENE VALLEY The Adirondack Park Invasive Plant Program (APIPP) will host its annual volunteer training sessions in aquatic invasive plant identification and survey techniques on June 20th at the Darrin Fresh Water Institute in Bolton Landing, June 25th at Paul Smith’s College, and June 27th at the Raquette Lake School. All sessions are from 10:00 a.m. – 2:00 p.m. and are free and open to the public, but space is limited. Please RSVP by June 13th to Meghan Johnstone at 518-576-2082 x 119 or Returning volunteers, new volunteers, or individuals simply interested in learning about aquatic plants are encouraged to attend.

Aquatic enthusiasts can help protect the Adirondack region from invasive species. Hundreds of citizens in the Adirondack region keep watchful eyes for new aquatic invasive species infestations which can lead to quick removal. To-date, nearly 600 citizens volunteered over 6,500 hours to survey 300 waterbodies. Their vigilance each year in APIPP’s early detection program, now in its twelfth year, has established a baseline to better understand the distribution of infected waters.

Armed with this information, organizations and communities take prescriptive prevention and management actions, such as having stewards at boat launches to inspect watercraft for attached plant fragments or starting control programs to remove invading plants.

At least 88 Adirondack lakes and ponds are infested with aquatic invasive plants, like Eurasian watermilfoil and water chestnut, and aquatic invasive animals, like spiny waterflea and Asian clam. Hydrilla, an aquatic invasive plant relatively new to New York State but not yet detected in the Adirondacks, may be on the move this summer. Plant fragments are easily spread from lake to lake by “hitchhiking” on boats, gear, and trailers. Fragments can start new infestations that clog waterways, degrade recreational opportunities, and push out native plants.

Luckily, as the boating season begins, volunteers help survey lakes and ponds to search for these non-native invasive plants. The number of “invasive-free” lakes surveyed by APIPP volunteers and partner staff is more than two times that of infested lakes. A real opportunity exists in the Adirondacks to protect widespread degradation by aquatic invasive species.

The APIPP is a partnership program among governmental and nongovernmental organizations that is housed by the Adirondack Chapter of The Nature Conservancy. Learn more about APIPP online at and follow APIPP’s activity blog at

Friday, May 24, 2013

U.S. Can Grow Copious Amounts of Pond Scum for Fuel

Wed, 05/22/2013 - 7:00am Pacific Northwest National Laboratory

An algae bloom in North Carolina, a region of the country equipped for broad-scale algae growth. A new analysis shows that the nation's land and water resources could likely support the growth of enough algae to produce up to 25 billion gallons of algae-based fuel a year, one-twelfth of the country's yearly needs.

The findings come from an in-depth look at the water resources that would be needed to grow significant amounts of algae in large, specially built shallow ponds. The results were published in Environmental Science and Technology.

"While there are many details still to be worked out, we don't see water issues as a deal breaker for the development of an algae biofuels industry in many areas of the country," says first author Erik Venteris of the Department of Energy's Pacific Northwest National Laboratory.

For the best places to produce algae for fuel, think hot, humid and wet. Especially promising are the Gulf Coast and the Southeastern seaboard.

"The Gulf Coast offers a good combination of warm temperatures, low evaporation, access to an abundance of water and plenty of fuel-processing facilities," says hydrologist Mark Wigmosta, the leader of the team that did the analysis.

Wooing algae as fuel

Algae, it turns out, are plump with oil, and several research teams and companies are pursuing ways to improve the creation of biofuels based on algae — growing algae composed of more oil, creating algae that live longer and thrive in cooler temperatures, or devising new ways to separate out the useful oil from the rest of the algae.

But first, simply, the algae must grow. The chief requirements are sunlight and water. Antagonists include clouds, a shortage of water and evaporation. A previous report by the same team looked mainly at how much demand algae farms would create for freshwater. That report demonstrated that oil based on algae have the potential to replace a significant portion of the nation's oil imports and drew the attention of President Obama.

The new report focuses on actual water supplies and looks at a range of possible sources of water, including fresh groundwater, salty or saline groundwater, and seawater. The team estimates that up to 25 billion gallons of algal oil could be produced annually, an increase of four billion gallons over the previous study's estimate. The new amount is enough to fill the nation's current oil needs for one month — about 600 million barrels — each year. The study's authors note that the new estimate is exactly that — an estimate — based to some degree on assumptions about land and water availability and use.

"I'm confident that algal biofuels can be part of the solution to our energy needs, but algal biofuels certainly aren't the whole solution," says Wigmosta. Most important, he notes that the cost of making the fuel far exceeds the cost of traditional gasoline-based products right now.

Big ponds, big potential

An algae farm would likely consist of many ponds, with water maybe six to 15 inches deep. A few companies have built smaller algae farms and are just beginning to churn out huge amounts of algae to convert to fuel; earlier this year, one company sold algae-based oil to customers in California. Players in the algae biofuels arena range from Exxon-Mobil, which launched a $600 million research effort four years ago, to this year's teenage winner of the Intel Science Talent Search, who was recognized for her work developing algae that produce more oil than they normally do.

The availability of water has been one of the biggest concerns regarding the adoption of broad-scale production of algal biofuel. Scientists estimate that fuel created with algae would use much more water than industrial processes used to harness energy from oil, wind, sunlight, or most other forms of raw energy. To produce 25 billion gallons of algae oil, the team estimates that the process annually would require the equivalent of about one-quarter of the amount of water that is now used each year in the entire U.S. for agriculture. While that is a huge amount, the team notes that the water would come from a multitude of sources: fresh groundwater, salty groundwater and seawater.

For its analysis, the team limited the amount of freshwater that could be drawn in any one area, assuming that no more than five percent of a given watershed's mean annual water flow could be used in algae production. That number is a starting point, says Venteris, who notes that it's the same percentage that the U.S. Environmental Protection Agency allows power plants to use for cooling.

"In arid areas such as the Desert Southwest, five percent is probably an overstatement of the amount of water available, but in many other areas that are a lot wetter, such as much of the East, it's likely that much more water would be available," says Venteris.

"While the nation's Desert Southwest has been considered a possible site for vast algae growth using saline water, rapid evaporation in this region make success there more challenging for low- cost production," Venteris adds.

Venteris and colleagues weighed the pluses and minuses of the various water sources. They note that freshwater is cheap but in very limited supply in many areas. Saline groundwater is attractive because it's widely available but usually at a much deeper depth, requiring more equipment and technology to pump it to the surface and make it suitable for algae production. Seawater is plentiful, but would require much more infrastructure, most notably the creation of pipelines to move the water from the coast to processing plants.

The team notes that special circumstances, such as particularly tight water restrictions in some areas or severe drought or above-average rainfall in others, could affect its estimates of water availability. _______________________________
Ed. Note: We certainly have a propensity for turning lakes and ponds green without even trying. Wouldn't it be nice to turn the tails on nuisance algae and produce something useful?

Thanks to Diane Rush of Hampshire Controls for the submission.

Wednesday, May 15, 2013

Spring Peepers

At night, the strident call of Spring Peepers (Pseudacris crucifer), the ducklike clacking of Wood Frogs (Rana sylvatica), and the short trill of Grey Tree Frogs (Hyla versicolor), fill the air around every bog and wet place. Later in the summer, these tiny amphibians are sometimes found while walking in the woods and fields, mistakenly called baby frogs by the young children who can’t resist picking them up to show to their parents. At maturity, the tiny, brown Spring Peeper is just 3/4 - 1 1/4 inches in size. The nocturnal Spring Peeper is found in wooded areas in or near permanent or temporarily flooded ponds and swamps and hibernates under logs and loose bark. The Grey Tree Frog is 1 1/4 - 2 inches. The nocturnal Grey Tree Frog lives high in trees and descend only at night, usually just to chorus and to breed. The Wood Frog, brown with a bandit's mask of black behind its eyes, is only slightly larger at 1 3/8 - 2 3/4 inches. In the colder parts of its range, the Wood Frog is an explosive breeder. Swarms of pairs lay fertilized eggs within 1 or 2 days, then disappear into the surrounding country. It may venture far from water during summer, and hibernates in forest debris during winter. The Spring Peeper, a Chorus Frog, and the Grey Tree Frogs are members of the Tree Frog Family (Hylidae), while the Wood Frog is a member of the True Frog Family (Ranidae) and closely related to the familiar Leopard Frog.
Source: an excerpt from "A Few Summer Days in the Adirondacks:
A Natural History of the Adirondack Park
" by Michael R. Martin